
Code.org Computer Science Discoveries Syllabus and Overview

Welcome to Computer Science Discoveries
Code.org’s CS Discoveries is an introductory, classroom-based course appropriate for 6-10th grade students. The course
aims to empower students to create authentic artifacts and engage with computer science as a medium for creativity,
communication, problem solving, and fun. CS Discoveries (CSD) takes a wide lens on computer science by covering
topics such as programming, physical computing, web development, design, and data. The course inspires students as
they build their own websites, apps, games, and physical computing devices. Our curriculum is available at no cost for
anyone, anywhere in the world and can be accessed at code.org/csd.

Curriculum At-a-Glance
CSD is designed with the new-to-CS student and teacher in mind and can be taught as a year-long course, a
semester-long course (3-5 hours per week of instruction for 9+ weeks), or in a more modular approach, teaching the units
that fit the teacher’s needs. See our Implementation Guide for more details on ways to implement CSD. When teaching
these units as a full-year course, the following sequence will satisfy all of the middle school CSTA Standards.

Problem Solving and
Computing

Students learn about the problem-solving process, the input-output-store-process model
of a computer, and how computers help humans solve problems. Students end the unit
by proposing their own app to solve a problem.

Web Development
Students learn to create websites using HTML and CSS inside Code.org’s Web Lab
environment. Throughout the unit, students consider questions of privacy and
ownership on the internet as they develop their own personal websites.

Interactive Animations
and Games

Students learn fundamental programming constructs and practices in the JavaScript
programming language while developing animations and games in Code.org’s Game
Lab environment. Students end the unit by designing their own animations and games.

The Design Process

Students apply the problem solving process to the problems of others, learning to
empathize with the needs of a user and design solutions to address those needs. During
the second half of the unit, students form teams to prototype an app of their own design,
first on paper and eventually in Code.org’s App Lab environment.

Data and Society

Students explore different systems used to represent information in a computer and the
challenges and trade-offs posed by using them. In the second half of the unit, students
learn how collections of data are used to solve problems and how computers help to
automate the steps of this process.

Creating Apps with
Devices

Students use Code.org’s App Lab environment, along with either the Adafruit Circuit
Playground or the BBC micro:bit, to explore the relationship between hardware and
software. Students develop prototypes that mirror existing innovative computing
platforms, before ultimately designing and prototyping one of their own

Optional Unit

AI and Machine
Learning

Students learn how machine learning can be used to solve problems by preparing data,
training a machine learning model, then testing and evaluating the model for accuracy
and bias. Students use Code.org’s AI Lab environment to train machine learning models,
then import their models into App Lab to create apps that solve problems

1

http://code.org/csd
https://docs.google.com/document/d/1sM_1Oxb7TGp5gSfuMjs0X0_Tko9tm8QJ4N6L26NI_iE/edit


Code.org Computer Science Discoveries Syllabus and Overview

Our Vision
Code.org's vision is that every student in every school should have the opportunity to learn computer science
(code.org/about). Our curriculum is designed so that an empowered teacher can lead a diverse group of students through
experiences that are supportive, equitable, engaging, and lead to valuable learning (code.org/educate/curriculum/values).

Historically this vision has contrasted sharply with reality. Until recently, most schools did not offer computer science at all,
and what classes there were notoriously lacked in diversity. Additionally, many students found these classes unengaging,
intimidating, or simply disconnected from their lived experiences with technology. Thanks to efforts by many organizations
and individuals, this world is beginning to change: many more schools now offer computer science courses; more diverse
students take those courses; and more engaging, relevant, and equitable pedagogy has become the established norm.
Even so, there is much work still to be done. This course is designed to continue this momentum as the collective CS
education community moves towards this vision of an equitable CS education system.

How We Support Our Vision
Many aspects of Code.org's CS Discoveries curriculum are designed to bring about the eventual change we aim to see
more broadly in CS education. Some of the most significant features are listed below.

Free and open:We make our curriculum, videos, and tools free and open for anyone to adopt.

Prioritize New-to-CS Teachers: Historically only a few schools could hire trained computer scientists as teachers, which
severely limited which schools could offer a CS course. Reaching all schools has meant developing our CS Discoveries
course with the understanding that most of our teachers are new-to-CS and prioritizing their needs. As such, our course
includes some distinctive features.

● Comprehensive lesson plans and resources designed to ensure new-to-CS teachers have everything they need
to implement the course

● Clear and consistent pedagogy to help new-to-CS teachers develop best practices as CS teachers
● High-quality videos that help teachers introduce and explain CS concepts
● An associated professional learning program that pays particular attention to the needs of new-to-CS teachers

Equitable Pedagogy: Our curriculum is designed to promote an equitable classroom environment for all students, with
particular attention paid to the experiences of historically excluded groups, most notably young women and Black,
Hispanic, and Native American students. Drawing from extensive feedback from our classrooms, as well as CS education
research, our course includes many features designed to support and prioritize these students:

● Pedagogy that develops a collaborative and supportive classroom environment
● Specific attention paid to language demands of our lessons
● Projects and activities that highlight a variety of applications of computing and frequently ask students to

incorporate their own backgrounds and interests.
● Curriculum videos that feature a cast of diverse role models in terms of race, gender, and profession who

empower our diverse students to "see themselves" as part of the world of computing
● A professional learning program that highlights these features and helps teachers reflect on how best to

implement them within their own classroom

Join Us in this Vision
We think our vision is audacious and deeply motivating. If you feel the same, the best way to join us in this vision is to
teach this course! We know that for many teachers this represents a significant undertaking, and we have aimed to do our
best to help share the load. Based on the feedback of many teachers we know it will be a challenging, but ultimately
gratifying experience. Code.org is here to support you, and we look forward to your feedback so that we can continue to
make CS Discoveries an even better experience for our students and teachers.

2

https://code.org/about
https://code.org/educate/curriculum/values


Code.org Computer Science Discoveries Syllabus and Overview

Provided Materials
Our materials and tools are specifically created with a focus on foundational concepts and are designed to support
exploration and discovery. This allows students to develop an understanding of these concepts through “play” and
experimentation. From our coding tools to our non-coding tools and videos, all our resources have been engineered to
support the lessons in our curriculum, and thus our philosophy about student engagement and learning. Together, these
resources typically allow the teacher to act in the role of facilitator and coach when addressing unfamiliar material. In
instances when the teacher acts as the primary source of information, generous supports are provided.

All resources below can be accessed free of charge at code.org/csd.

Lesson Plans

● Instructional guides for every lesson
● Activity Guides and handouts for students
● Lesson presentation slides
● Formative and summative assessments
● Exemplars, rubrics, and teacher dashboard

Videos

● Tutorials, instructional videos, and inspirational videos

Tools

● Web Lab - A browser-based tool for creating and publishing HTML and CSS web sites.
● Game Lab - A browser-based JavaScript programming environment designed to create sprite-based drawing,

animations, and games. Enables students to switch between programming in blocks or text.
● App Lab - A browser-based JavaScript programming environment for creating interactive apps. Enables students

to switch between programming in blocks or text.
● AI Lab - A browser-based tool for creating machine learning models from tabular data.

Technical Requirements
The course requires and assumes a 1:1 computer lab or setup such that each student in the class has access to an
Internet-connected computer every day in class. The course is developed to be completed within the classroom - no
homework or after-hours computer access is assumed. All provided course tools and resources listed above are available
online. Tablets are not currently supported. For more details on the technical requirements, please visit:
code.org/educate/it

Suggested Materials and Supplies
One potential cost to consider when teaching this course is printing. Many lessons have handouts that are designed to
guide students through activities. While it is not required that all of these handouts be printed, many were designed to be
printed and we highly recommend printing when possible.

Beyond printing, some lessons call for typical classroom supplies and manipulatives such as: Student journals, poster
paper, markers/colored pencils, scissors, scrap paper, glue or tape, post-it notes or index cards (or similar sized scrap
paper), and rulers or a straight edge of some kind.

3

http://code.org/csd
https://code.org/educate/it


Code.org Computer Science Discoveries Syllabus and Overview

In addition to those general course materials, the following items are called for in specific units:
● Problem Solving and Computing

○ Aluminum foil, container for water, pennies (note that pennies can be replaced with some other kind of
weight of the same size). Alternate activities are available if you do not have access to these supplies.

● Creating Apps with Devices (Option A and Option B)
○ Option A: Classroom set of Circuit Playgrounds. Check out code.org/maker/circuitplayground for more

details.
○ Option B: Classroom set of micro:bit devices. Check out code.org/maker/microbit for more details.
○ Maker supplies, such as empty tissue boxes or cardboard rolls or scratch paper

*Note: The Creating Apps with Devices unit has two implementation options - one for those using circuit
playgrounds and one for those using micro:bit. Teachers should not buy both sets of devices or teach both unit
options as they are equivalent and cover the same content.

CS Discoveries Curriculum Overview
The following pages provide an overview of each of the units in the CS Discoveries curriculum. For each unit, there is a
description of the unit, big questions answered throughout the unit, and learning goals. More information about each unit
can be found on the course overview page of our website: http://studio.code.org/courses/csd

Problem Solving and Computing
Problem Solving and Computing is a highly interactive and collaborative introduction to the field of computer science, as
framed within the broader pursuit of solving problems. Students practice using a problem solving process to address a
series of puzzles, challenges, and real-world scenarios. Next, students learn how computers input, output, store, and
process information to help humans solve problems. The unit concludes with a project in which students design an
application that helps solve a problem of their choosing.

Big Questions
Chapter 1 - The Problem Solving Process

● What strategies and processes can I
use to become a more effective
problem solver?

Chapter 2 - Computers and Problem Solving
● How do computers help people to solve problems?
● How do people and computers approach problems differently?
● What does a computer need from people in order to solve

problems effectively?

Unit Goals
● Identify the defined characteristics of a computer and how it is used to solve information problems.
● Use a structured problem solving process to address problems and design solutions that use computing

technology.
● Create a collaborative classroom environment where students view computer science as relevant, fun, and

empowering.

4

https://code.org/maker/circuitplayground
https://code.org/maker/microbit
http://studio.code.org/courses/csd


Code.org Computer Science Discoveries Syllabus and Overview

Web Development
In Web Development, students are empowered to create and share content on their own web pages. They begin by
thinking about the role of the web and how it can be used as a medium for creative expression. As students develop their
pages and begin to see themselves as programmers, they are encouraged to think critically about the impact of sharing
information online and how to be more critical consumers of content. They are also introduced to problem solving as it
relates to programming while they learn valuable skills such as debugging, using resources, and teamwork. At the
conclusion of the unit, students will have created a personal website they can publish and share.

Big Questions
Chapter 1 - Creating Web Pages

● Why do people create websites?
● How can text communicate content and structure on

a web page?
● How do I safely and appropriately make use of the

content published on the internet?
● What strategies can I use when coding to find and fix

issues?

Chapter 2 - Multi-Page Websites
● How can websites be used to address problems

in the world?
● What strategies can teams use to work better

together?
● How do I know what information can be trusted

online?

Unit Goals
● Create digital artifacts that use multiple computer languages to control the structure and style of their content.
● Create a website as a form of personal expression.
● Use different programming languages to solve different problems.
● Examine their role and responsibilities as both creators and consumers of digital media.

Interactive Animations and Games
In the Interactive Animations and Games unit, students build on their coding experience as they create programmatic
images, animations, interactive art, and games. Starting off with simple, primitive shapes and building up to more
sophisticated sprite-based games, students become familiar with the programming concepts and the design process
computer scientists use daily. They then learn how these simpler constructs can be combined to create more complex
programs. In the final project, students develop a personalized, interactive program.

Big Questions
Chapter 1 - Images and Animations

● What is a computer program?
● What are the core features of most programming

languages?
● How does programming enable creativity and

individual expression?
● What practices and strategies will help me as I

write programs?

Chapter 2 - Building Games
● How do software developers manage complexity

and scale?
● How can programs be organized so that common

problems only need to be solved once?
● How can I build on previous solutions to create even

more complex behavior?

Unit Goals
● Create an interactive animation or game that includes basic programming concepts such as control structures,

variables, user input, and randomness.
● Work with others to break down programming projects using sprites and functions.
● Give and respond constructively to peer feedback, and work with their teammates to complete a project.
● View yourself as a computer programmer, and see programming as a fun and creative form of expression.

5



Code.org Computer Science Discoveries Syllabus and Overview

The Design Process
The Design Process unit transitions students from thinking about computer science as a tool to solve their own problems
towards considering the broader social impacts of computing. Through a series of design challenges, students are asked
to consider and understand the needs of others while developing a solution to a problem. The second half of the unit
consists of an iterative team project, during which students have the opportunity to identify a need that they care about,
prototype solutions both on paper and in App Lab, and test their solutions with real users to get feedback and drive further
iteration.

Big Questions
Chapter 1: User Centered Design

● How do computer scientists identify the needs of
their users?

● How can we ensure that a user's needs are met by
our designs?

● What processes will best allow us to efficiently
create, test, and iterate upon our design?

Chapter 2: App Prototyping
● How do teams effectively work together to develop

software?
● What roles beyond programming are necessary to

design and develop software?
● How do designers incorporate feedback into

multiple iterations of a product?

Unit Goals
● See the design process as a form of problem solving that prioritizes the needs of a user.
● Identify user needs and assess how well different designs address them.
● Develop paper and digital prototypes, gather and respond to feedback about a prototype, and consider ways

different user interfaces do or do not affect the usability of their apps.
● Understand other roles in software development, such as product management, marketing, design, and testing,

and how to use what they have learned about computer science as a tool for social impact.

Data and Society
The Data and Society unit is about the importance of using data to solve problems and it highlights how computers can
help in this process. The first chapter explores different systems used to represent information in a computer and the
challenges and tradeoffs posed by using them. In the second chapter, students learn how collections of data are used to
solve problems, and how computers help to automate the steps of this process. In the final project, students gather their
own data and use it to develop an automated solution to a problem.

Big Questions
Chapter 1: Representing Information

● Why is representation important in problem solving?
● What features does a representation system need to

be useful?
● What is necessary to create usable binary

representation systems?
● How can we combine systems together to get more

complex information?

Chapter 2: Solving Data Problems
● How does data help us to solve problems?
● How do computers and humans use data

differently?
● What parts of the data problem solving process

can be automated?
● What kinds of real world problems do

computers solve by using data?

Unit Goals
● Understand the role of data and data representation in solving information problems.
● Explain the necessary components of any data representation scheme, as well as the particulars of binary and the

common ways that various types of simple and complex data are represented in binary code.
● Design and implement a data-based solution to a given problem and determine how the different aspects of the

problem solving process could be automated.

6



Code.org Computer Science Discoveries Syllabus and Overview

Creating Apps with Devices
In this unit, students explore the role of physical devices in computing. Using App Lab and either an Adafruit’s Circuit
Playground or BBC micro:bit, students develop programs that utilize the same hardware inputs and outputs that you see
in the smart devices, looking at how a simple rough prototype can lead to a finished product. Then, students explore how
physical devices can be used to react to the world around them using a “maker” mindset to create prototypes with
everyday materials.

This unit has two options: Option A uses the Adafruit Circuit Playground, and Option B uses the BBC micro:bit. Teachers
should pick whichever option matches the devices they have in their classroom - they do not need to purchase both sets
of devices or try to teach both options.

Big Questions
Chapter 1: Inputs and Outputs

● What inputs and outputs are available on a
physical device?

● What inputs and outputs are available on an app?
● How can we create apps that use a physical

device to control a digital app?

Chapter 2: Building Physical Prototypes

● How can a physical device use sensors to react to
a physical environment?

● How can simple hardware be used to develop
innovative new products?

Unit Goals
● Design and build a physical computing device that integrates physical inputs and outputs with digital apps.
● Create app prototypes that use a physical device to solve real-world problems
● Use physical computing to solve problems in fun and innovative ways.

AI and Machine Learning
In the AI and Machine Learning unit, students learn how computers can find patterns in data to make decisions. Students
use the Problem Solving Process for machine learning to define a problem, prepare their data, train a model, then test
and evaluate their model for accuracy and potential bias. Students explore a variety of scenarios and datasets that lend
themselves to machine learning. They also explore some of the modern problems with machine learning, especially
around bias and impact.

This unit is designed as an optional unit within a year-long CS Discoveries course. Teachers can decide to implement this
instead of one of the other units. This is especially useful for classrooms that do not have physical devices and are unable
to implement the Creating Apps with Devices unit.

Big Questions
Chapter 1: Understanding Machine Learning

● How does machine learning find patterns in data
to make decisions?

● How can we avoid bias when training a machine
learning model?

Chapter 2: Design a Machine Learning App

● How can machine learning be used to solve
problems in our community?

Unit Goals
● Create a machine learning model in AI Lab to solve a problem, and use App Lab to create an app that uses their

model.
● Understand how machine learning models make decisions from data
● Create machine learning models from their own data to solve problems in their community.

7


